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Outline of the talk

Basic definitions: Finite groups and their representations
Principal series and their applications

Finite groups with faithful 3-dimensional irreducible representations

An inequality for characters
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Basic definitions |: Order, conjugacy classes

The number of elements of a group is called order of the group.

Finite groups can be divided into conjugacy classes.

Conjugacy classes

Two elements a and b of a finite group G are conjugate, if
JceG: b=clac

To a given element a of a group one can assert the equivalence class of all
elements which are equivalent to a. This equivalence class is called
conjugacy class.
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Basic definitions Il: Representations

Homomorphisms and Representations

¢ : G — G’ is called group homomorphism, if

¢(ab) = ¢p(a)p(b) Va,be G.
Representation: Homomorphism D : G — D(G).

D(G) ... Linear operators over a vectorspace Vp. dimD := dimV)p

Equivalent representations

D~D&3C: D =CDC.

Theorem

Every representation of a finite group is equivalent to a unitary
representation.
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Basic definitions Il1: Irreducible representations (irreps)

Invariant subspaces and irreducible representations

Let D be a representation of G on a vectorspace Vp. A subspace
W C Vp is called invariant, if

D(a)W =W VaeG.

A representation is called irreducible, if there is no nontrivial invariant
subspace of Vp.
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Basic definitions Il1: Irreducible representations (irreps)

D not irreducible = completely reducible (for finite groups).
=D=D1®D,y® .. Dy

Example: Matrix representations:
D =D& Dy, = AM:

Dl(a) 0

M~1D(a)M = < 0 Dy (a)

) Yae G. "“block-diagonal’

In the reduced block-diagonal form one can see the invariant subspaces.
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Basic definitions |V: Characters

Characters
Let a € G:

xp(a) := Tr(D(a))
is called character of the representation D.

Equivalent representations have the same characters!

Equivalent group elements have the same characters!

Characters of all non-equivalent irreps of a finite group

= Character table
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Basic definitions |V: Characters

2mi

Example for a character table (w =¢e73 ):

Ar | Gi(1) G(3) G(4) G(4)
1 1 1 1 1
1 1 1 w e
1" 1 1 w? w
3 3 -1 0 0

The character table of the group As.

# conjugacy classes = # non-equivalent irreps.

> (dimD,)? = ord(G).

irreps a
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Basic definitions IV: Orthogonality of characters

Scalar product for characters

(XDl’XDQ = OI'd ZXDI XDQ(a)

| .

Orthogonality relation for characters
Characters of non-equivalent irreps are orthonormal.

(XD,-7 XD_,') = 6’]
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Application: Reduction of tensor products using the

character table

XD1®@D, = XDy * XDs

D1 ® Dy = @b)\DA = by = (XD1 : XDz:XDA)‘
A

Example: A4
3p3=101'01"®303.
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Principal series and their applications
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Principal series of a group

Definition

H < G:  H& G is an invariant subgroup (normal subgroup) of G.

Principal series of G:

{6}<G1<1"'<]Gk_1<1GkEG
such that

e G; < Gj Vi<j, ie Gjis an invariant subgroup of all groups to
the right of it.

@ Gj/Gj_1 is simple (has no nontrivial invariant subgroups)
Vj=1,..., k. = The principal series is maximal.
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Why can the principal series be useful?

If the principal series

{e} <G < <61 <G =6

has a reasonable length k it may be a useful concept
@ to understand the structure of the group,
@ to find the conjugacy classes, and

@ to construct the irreps of G.
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Example: A(27) and A(54)

A(27): conjugacy classes — normal subgroups — principal series

Generators:
1 0 0 010 '
C=(0w 0}, E=(0 0 1|, wherew=e*"/3,
0 0 w? 1 00
Normal subgroups:
((wl)) = Zs,

(Wi, €)) = (W1, E)) = Zs x Zs
= two principal series
{1} < ((wl)) < ((wl, C)) < A(27)
{1} < (W) < {(wl, E)) < A(27)
These two principal series are isomorphic (Jordan-Holder theorem)
= {e} QZ3 <75 xZz <1 A27)
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A(27): Construction of irreps from the principal series

{e} <G < <G1 <9 Ge=6
The principal series is a series of normal subgroups =
Every irrep of G/G; is an irrep of G.
Moreover, for i < j:
Every irrep of G/G; is an irrep of G/G;.

Consequences for {e} <1 Z3 < Z3 x Z3 < A(27):

o Irreps of A(27)/(Z3 x Z3) = Z3 and A(27)/7Z3 = Z3 x Z3 are irreps
of A(27).

o Irreps of A(27)/(Z3 x Z3) = Zs3 are irreps of A(27)/Zs3 = 73 X Zs3.
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Irreps of A(27)

Irreps of A(27)/73 = 73 X 73 are irreps of A(27)

= 1.: C—uw, E~o, i,j=0,1,2.

)

Remaining irreps: defining representation 3 and its complex conjugate 3*.

Now: A(54):

0 0o -1
Generators;: C, Eand B=| 0 -1 0
-1 0 0

From relations of generators:

{e} <73 <73 x 73 < A(27) <1 A(54)
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Conjugacy classes of A(54)

From the principal series {e} <1 Z3 <1 Z3 x Z3 <1 A(27) < A(54) we know

A(54)/A(27) = ((A(27)B)) = T,

Theorem
Let
@ H be a proper normal subgroup of G such that G/H = 7Z,, r > 2, and
@ Hb be a generator of G/H.
Then for a conjugacy class C of H there are two possibilities:
@ bCb™! = C = C is a conjugacy class of G.
Q@ bCb™ N Cy = {}, then C,UbLCbIU...Ub1Ch (D isa
conjugacy class of G.
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Conjugacy classes of A(54)

Now we can construct conjugacy classes of A(54) from those of A(27):
@ Classes which are invariant under C — BCB™1:
o Cl=0 = {1},
o Ch=Cp = {wl},
o Ci=Cs = {u?1}.
@ Classes which are not invariant under C — BCB™1:
Ci=C4sUBCyB™! = Cyq UCs,
Cé =Ce U BC(,B_l = Ce Uy,
Cé =CgU BCBBil = Cg Uy,
C; =Cpo U BC10871 = C19 U C11,

11 conjugacy classes of A(27) —— 7 conjugacy classes of A(54).

Remaining conjugacy classes of A(54): Cg, wCg, w’Cg.
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Irreps of A(54)

{e} < Z3 < Z3 x Zs < A(27) < A(54)

Factor groups:
o A(54)/A(27) = 7,
o A(54)/(Z3 x Z3) = S3,
o A(54)/7Z3 = (73 x 7Z3) X 7.
Thus:
o lIrreps of Zy are irreps of S3,
@ irreps of S3 are irreps of (Z3 x Zs3) X Zy and
@ irreps of (Z3 x Z3) X Zy are irreps of A(54).
Together with 3, 3* and their products with the Z-irreps we have found
all irreps of A(54).
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Application: ¥(36 x 3), X(72 x 3), X(216 x 3)

Principal series:
@ ¥(36 x3):{e} <73 < A(27) < A(54) < £(36 x 3)
o Y(72x3):{e} <Z3 < A(27) < A(54) < £(36 x 3) < X(72 x 3)
@ ¥(216 x 3): {e} 9 Z3 1 A(27) <« A(54) < (72 x 3) < £(216 x 3)

Example: Factor groups of ¥(216 x 3) :
o T(216 x 3)/X(72 x 3) = Zs
® Y (216 x 3)/A(54) = A4
e Y (216 x 3)/A(27) = T’ (double cover of As)
o T(216 x 3)/Z3 = T(216)

— Good starting point for the construction of the irreps and character
table of (216 x 3).

[W. Grimus & PL, 2010]
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Finite groups with faithful 3-dimensional
irreducible representations
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Motivation for studying finite groups in particle physics:
e Flavour symmetries (lepton mixing, quark mixing)
@ Spontaneous symmetry breaking of discrete symmetries does not give
rise to Goldstone bosons (if there is no accidental U(1)-symmetry)
Why do we study finite groups with faithful 3-dimensional irreducible
representations?

@ Physical motivation: Three generations of fermions = We study
groups with three-dimensional faithful representations, i.e. subgroups

of U(3).
o lIrreducibility:

s excludes subgroups of U(2) and U(1)
s excludes U(3)-subgroups which don't have a faithful irrep at all. These

groups have to be analysed in future research.

Investigation of U(3) — theorems which are easily generaliseable to U(m).
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The finite subgroups of U(3)

Finite subgroups of U(3) — as far as we know not yet classified.

Finite subgroups of SU(3) — classified at the beginning of the 20t"
century by Miller, Dickson and Blichfeldt.!

Important question for flavour physics:

Is it (in terms of model building) enough to consider SU(3) instead
of U(3)?

— Not answered yet.

Y Theory And Applications of Finite Groups; John Wiley & Sons, New York, 1916
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finite subgroups of SU(3)

type subgroup order of the subgroup
¥(nx 3), n=36,72,216, 360 ¥(36 x 3) 108
> (72 x 3) 216
(216 x 3) 648
>(360 x 3) 1080
> (m), m = 60, 168 >(60) ~ As 60
>(168) 168
A(3n%), n € N\{0,1} A(3n?); A(12) ~ Ay 3n?
A(6n?), n € N\{0,1} A(6n?); A(24) ~ S, 6n?
(C)-groups C(n, a, b) no general formula
(D)-groups D(n,a, b;d,r,s) no general formula
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Finite subgroups of U(3)

Finite subgroups of U(3) are not yet classified.
How can we get an idea of the finite subgroups of U(3)?

Two helpful tools:
o the SmallGroups Library,
@ the computer algebra system GAP (Groups, algorithms and
programming)?
@ SmallGroups library contains information on all finite groups up to
order 2000 (except 1024).

@ GAP: read information from the library and calculate character tables,
irreps, ...

2www.ga p-system.org
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Finite subgroups of U(3)

We are interested in finite groups which

@ have a

@ 3-dimensional

@ irreducible representation and

@ cannot be written as a direct product with a cyclic group.
Examples: As, Si, A(54),... butnot S3, Aq X Zp, ...

Why not direct products?

Let G be a finite group with an m-dimensional faithful irrep. Let ¢ be the
order of the center of G.

Then Z, x G has a faithful m-dimensional irrep if and only if n and ¢ have
no common divisor.

In that case of Z, x G from those of G is

Patrick Ludl (University of Vienna) Helpful tools in finite group theory December 3", 2010 26 / 41



Extraction of groups from the SmallGroups library

How are finite groups listed in the SmallGroups library? — [g,/]

g: order of the group, j: counter. Example: As = [12, 3]
gap> NumberSmallGroups(12);

5

gap> g:=SmallGroup(12,3);

<pc group of size 12 with 3 generators>
gap> IsAbelian(g);

false
gap> ct:=CharacterTable(g); .
CharacterTable( <pc group of size 12 with 3 generators> ) ° There are f|Ve grOUpS Of
Displ i
gore Bieplaytan order 12,
32 52 g @ SmallGroup number
[12,3] is non-Abelian,
la 3a 2a 3b
2P la 3b la 3a
e s e @ character table shows a
X1 1111 3-dimensional faithful
X.2 1 A 1 /A .
X.3 1/A 1 A Irrep.
X.4 3 .-
A = E(3)"2

(-1-ER(-3))/2 = -1-b3
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Extraction of groups from the SmallGroups library

GAP-command StructureDescription — direct products

gap>StructureDescription(SmallGroup([12,3]));
vy
gap>StructureDescription(SmallGroup([24,13]));
"C2 x A4"

= We have tools to search the SmallGroups library for finite subgroups of
U(@3).

100000 T T

80000 - -

60000 -

How many non-Abelian
groups are there? 40000 - ]

N(g)

20000 -

0 B I L I L L

0 100 200 300 400 500

— finite subgroups of U(3) of order smaller than 512. g
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The finite subgroups of U(3) of order smaller than 512

List (including generators) of the finite subgroups of U(3) (possessing a
faithful 3-dim. irrep) of order smaller than 512 [PL, 2010]
Noteworthy results:

@ SU(3)-subgroups: Classification scheme of Miller, Blichfeldt and
Dickson confirmed (up to order 511)

@ Smallest group of type (D): [162,14] = D(9,1,1;2,1,1) cannot be
interpreted as irrep of some A(6n?).

@ [J(3)-subgroups: some series of finite subgroups of U(3) found.
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Construction of some series of finite subgroups of U(3)

Helpful theorem

Let G = H x Z, be a finite group with the following properties:
@ G has a faithful m-dimensional irrep D.
@ nis prime.
© The center of G is of order ¢ # n with ¢ prime or ¢ = 1.
@ G cannot be written as a direct product with a cyclic group.
Generators of D(H): Ai,...,As; generator of D(Zy) : B. Then

G = (A1, .., Ay, €71/ B))

(which has a faithful m-dim. irrep too) cannot be written as a direct
product with a cyclic group if and only if

b=clnk, Jjyk € N.
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Example: The group Si(m)

54:A4>4Z2

Generators: As: (14)(23), (123); Zy: (23)
@ S;4 = A4 X Z5 has a faithful 3-dimensional irrep 3. = n = 2.
@ n=2Iis prime.
@ The center of Sy is trivial. = c=1#2=n.

@ S, cannot be written as a direct product with a cyclic group.

1 0 0 0 0 -1 10
3: 23— [0 =1 0 | =4 @3—~|-1 0 0 |=5e)~|0 O
0 0 -1 0 1 0 01

Sa(m) := ((A, B, e®™ /2" C)) = Ay %1 Zom,  m € N\{0}.

— Series of U(3)-subgroups.
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Series of finite subgroups of U(3)

group series

derived from

To(m) =7y X Zzm

ABn?, m) = (Z, x Zp) X Zgm, n € 3N
S4(m) =2 Ag X Zom

A(6n?, m) = A(3n?) x Zym, n ¢ 3N
A6, k), n € 3N

Th="7n %73

A(3n?) = (Z, x Tp) X T3, n & 3N
Sy =2 Ay X 7o

A(6n) = A(3n%) x Zy, n ¢ 3N
A(6n%), n € 3N

Patrick Ludl (University of Vienna) Helpful tools in finite group theory December 3", 2010 32 /41



An inequality for characters
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Construction of character tables

Especially in constructing character tables computer algebra systems are
extremely helpful, however ...

. we must not rely on computer algebra systems only
Construction of some character tables by hand — “helpful tricks”

Here one such trick will be presented.
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Characters of finite groups

Basic idea: a € G ... finite group:

a"=e, n:=ord(a)< oo

= in a representation
D(a)"=1

= eigenvalues of D(a) must be n-th roots of 1.

= character (trace) of D(a) is a sum of n-th roots of 1.

— What does this trivial insight tell us?
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An inequality for characters

An inequality for characters

Let a € G ... finite group, and let D be a representation of G. If
n:=ord(D(a)) =1,2,3,4,6

then
xp(a)=0 or [xp(a)l>1.

Proof: n =1,2: trivial (xp(a)= sum of +1).
n = 3,4,6: regular tilings of the plane.

— inequality for characters: trivial but useful
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Sums of up to five third roots of 1
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Sums of up to five fourth roots of 1

Sie-
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Sums of up to five sixth roots
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Sums of up to five fifth roots of 1
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Principal series
@ are helpful guides to understand the structure of a group
@ can be helpful in constructing irreps.
The finite subgroups of U(3) are not classified yet, but
o the finite subgroups of SU(3) are.
@ The SmallGroups library gives information on the finite groups of
order < 2000.
@ The computer algebra system GAP is a powerful tool to work with
finite groups.
@ The finite groups with faithful 3-dimensional irreps of order < 512
have been listed.
@ Several series of finite subgroups of U(3) have been derived from this
list.
Another helpful tool mentioned is
@ the inequality for characters derived from the regular tilings of the
plane.
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