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Basic definitions I: Order, conjugacy classes

The number of elements of a group is called order of the group.

Finite groups can be divided into conjugacy classes.

Conjugacy classes

Two elements a and b of a finite group G are conjugate, if

∃c ∈ G : b = c−1ac.

To a given element a of a group one can assert the equivalence class of all
elements which are equivalent to a. This equivalence class is called
conjugacy class.
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Basic definitions II: Representations

Homomorphisms and Representations

φ : G → G ′ is called group homomorphism, if

φ(ab) = φ(a)φ(b) ∀a, b ∈ G .

Representation: Homomorphism D : G → D(G ).

D(G ) ... Linear operators over a vectorspace VD . dimD := dimVD

Equivalent representations

D ′ ∼ D ⇔ ∃C : D ′ = C−1DC .

Theorem

Every representation of a finite group is equivalent to a unitary
representation.
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Basic definitions III: Irreducible representations (irreps)

Invariant subspaces and irreducible representations

Let D be a representation of G on a vectorspace VD . A subspace
W ⊂ VD is called invariant, if

D(a)W = W ∀a ∈ G .

A representation is called irreducible, if there is no nontrivial invariant
subspace of VD .
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Basic definitions III: Irreducible representations (irreps)

D not irreducible ⇒ completely reducible (for finite groups).

⇒ D = D1 ⊕ D2 ⊕ ...⊕ Dk

Example: Matrix representations:

D = D1 ⊕ D2 ⇒ ∃M:

M−1D(a)M =

(
D1(a) 0

0 D2(a)

)
∀a ∈ G . “block-diagonal”

In the reduced block-diagonal form one can see the invariant subspaces.
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Basic definitions IV: Characters

Characters

Let a ∈ G :
χD(a) := Tr(D(a))

is called character of the representation D.

Equivalent representations have the same characters!

Equivalent group elements have the same characters!

Characters of all non-equivalent irreps of a finite group

⇒ Character table
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Basic definitions IV: Characters

Example for a character table (ω = e
2πi
3 ):

A4 C1(1) C2(3) C3(4) C4(4)

1 1 1 1 1

1’ 1 1 ω ω2

1” 1 1 ω2 ω

3 3 −1 0 0

The character table of the group A4.

Theorem

# conjugacy classes = # non-equivalent irreps.∑
irreps α

(dimDα)2 = ord(G ).
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Basic definitions IV: Orthogonality of characters

Scalar product for characters

(χD1 , χD2) :=
1

ord(G )

∑
a∈G

χ∗D1
(a)χD2(a)

Orthogonality relation for characters

Characters of non-equivalent irreps are orthonormal.

(χDi
, χDj

) = δij .
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Application: Reduction of tensor products using the
character table

χD1⊗D2 = χD1 · χD2

D1 ⊗ D2 =
⊕

λ

bλDλ ⇒ bλ = (χD1 · χD2 , χDλ).

Example: A4

3⊗ 3 = 1⊕ 1’⊕ 1”⊕ 3⊕ 3.

Patrick Ludl (University of Vienna) Helpful tools in finite group theory December 3rd, 2010 10 / 41



Principal series and their applications
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Principal series of a group

Definition

H C G : H Ã G is an invariant subgroup (normal subgroup) of G .

Principal series of G :

{e} C G1 C · · · C Gk−1 C Gk ≡ G

such that

Gi C Gj ∀i < j , i.e. Gi is an invariant subgroup of all groups to
the right of it.

Gj/Gj−1 is simple (has no nontrivial invariant subgroups)
∀j = 1, ..., k . ⇒ The principal series is maximal.
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Why can the principal series be useful?

If the principal series

{e} C G1 C · · · C Gk−1 C Gk ≡ G

has a reasonable length k it may be a useful concept

to understand the structure of the group,

to find the conjugacy classes, and

to construct the irreps of G .
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Example: ∆(27) and ∆(54)

∆(27): conjugacy classes → normal subgroups → principal series

Generators:

C =

1 0 0
0 ω 0
0 0 ω2

 , E =

0 1 0
0 0 1
1 0 0

 , where ω = e2πi/3.

Normal subgroups:

〈〈ω1〉〉 ∼= Z3,

〈〈ω1, C 〉〉 ∼= 〈〈ω1, E 〉〉 ∼= Z3 × Z3

⇒ two principal series

{1} C 〈〈ω1〉〉 C 〈〈ω1, C 〉〉 C ∆(27)

{1} C 〈〈ω1〉〉 C 〈〈ω1, E 〉〉 C ∆(27)

These two principal series are isomorphic (Jordan-Hölder theorem)

⇒ {e} C Z3 C Z3 × Z3 C ∆(27)
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∆(27): Construction of irreps from the principal series

{e} C G1 C · · · C Gk−1 C Gk ≡ G

The principal series is a series of normal subgroups ⇒

Every irrep of G/Gi is an irrep of G .

Moreover, for i < j :

Every irrep of G/Gj is an irrep of G/Gi .

Consequences for {e} C Z3 C Z3 × Z3 C ∆(27):

Irreps of ∆(27)/(Z3 × Z3) ∼= Z3 and ∆(27)/Z3
∼= Z3 × Z3 are irreps

of ∆(27).

Irreps of ∆(27)/(Z3 × Z3) ∼= Z3 are irreps of ∆(27)/Z3
∼= Z3 × Z3.
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Irreps of ∆(27)

Irreps of ∆(27)/Z3
∼= Z3 × Z3 are irreps of ∆(27)

⇒ 1ij : C 7→ ωi , E 7→ ωj , i , j = 0, 1, 2.

Remaining irreps: defining representation 3 and its complex conjugate 3∗.

Now: ∆(54):

Generators: C , E and B =

 0 0 −1
0 −1 0
−1 0 0


From relations of generators:

{e} C Z3 C Z3 × Z3 C ∆(27) C ∆(54)
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Conjugacy classes of ∆(54)

From the principal series {e} C Z3 C Z3 × Z3 C ∆(27) C ∆(54) we know

∆(54)/∆(27) = 〈〈∆(27)B〉〉 ∼= Z2

Theorem

Let

H be a proper normal subgroup of G such that G/H ∼= Zr , r ≥ 2, and

Hb be a generator of G/H.

Then for a conjugacy class Ck of H there are two possibilities:

1 bCkb−1 = Ck ⇒ Ck is a conjugacy class of G .

2 bCkb−1 ∩ Ck = {}, then Ck ∪ bCkb−1 ∪ ... ∪ br−1Ckb−(r−1) is a
conjugacy class of G .
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Conjugacy classes of ∆(54)

Now we can construct conjugacy classes of ∆(54) from those of ∆(27):
1 Classes which are invariant under C 7→ BCB−1:

C′1 ≡ C1 = {1},
C′2 ≡ C2 = {ω1},
C′3 ≡ C3 = {ω2

1}.
2 Classes which are not invariant under C 7→ BCB−1:

C′4 = C4 ∪ BC4B
−1 = C4 ∪ C5,

C′5 = C6 ∪ BC6B
−1 = C6 ∪ C7,

C′6 = C8 ∪ BC8B
−1 = C8 ∪ C9,

C′7 = C10 ∪ BC10B
−1 = C10 ∪ C11,

11 conjugacy classes of ∆(27) 7−→ 7 conjugacy classes of ∆(54).

Remaining conjugacy classes of ∆(54): CB , ωCB , ω2CB .
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Irreps of ∆(54)

{e} C Z3 C Z3 × Z3 C ∆(27) C ∆(54)

Factor groups:

∆(54)/∆(27) ∼= Z2,

∆(54)/(Z3 × Z3) ∼= S3,

∆(54)/Z3
∼= (Z3 × Z3)o Z2.

Thus:

Irreps of Z2 are irreps of S3,

irreps of S3 are irreps of (Z3 × Z3)o Z2 and

irreps of (Z3 × Z3)o Z2 are irreps of ∆(54).

Together with 3, 3∗ and their products with the Z2-irreps we have found
all irreps of ∆(54).
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Application: Σ(36× 3), Σ(72× 3), Σ(216× 3)

Principal series:

Σ(36× 3) : {e} C Z3 C ∆(27) C ∆(54) C Σ(36× 3)

Σ(72× 3) : {e} C Z3 C ∆(27) C ∆(54) C Σ(36× 3) C Σ(72× 3)

Σ(216× 3) : {e} C Z3 C ∆(27) C ∆(54) C Σ(72× 3) C Σ(216× 3)

Example: Factor groups of Σ(216× 3) :

Σ(216× 3)/Σ(72× 3) ∼= Z3

Σ(216× 3)/∆(54) ∼= A4

Σ(216× 3)/∆(27) ∼= T ′ (double cover of A4)

Σ(216× 3)/Z3 ≡ Σ(216)

→ Good starting point for the construction of the irreps and character
table of Σ(216× 3).

[W. Grimus & PL, 2010]
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Finite groups with faithful 3-dimensional
irreducible representations
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Motivation

Motivation for studying finite groups in particle physics:

Flavour symmetries (lepton mixing, quark mixing)

Spontaneous symmetry breaking of discrete symmetries does not give
rise to Goldstone bosons (if there is no accidental U(1)-symmetry)

Why do we study finite groups with faithful 3-dimensional irreducible
representations?

Physical motivation: Three generations of fermions ⇒ We study
groups with three-dimensional faithful representations, i.e. subgroups
of U(3).

Irreducibility:

∗ excludes subgroups of U(2) and U(1)
∗ excludes U(3)-subgroups which don’t have a faithful irrep at all. These

groups have to be analysed in future research.

Investigation of U(3) → theorems which are easily generaliseable to U(m).
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The finite subgroups of U(3)

Finite subgroups of U(3) → as far as we know not yet classified.

Finite subgroups of SU(3) → classified at the beginning of the 20th

century by Miller, Dickson and Blichfeldt.1

Important question for flavour physics:

Is it (in terms of model building) enough to consider SU(3) instead
of U(3)?

→ Not answered yet.

1Theory And Applications of Finite Groups; John Wiley & Sons, New York, 1916
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The finite subgroups of SU(3)

type subgroup order of the subgroup

Σ(n × 3), n = 36, 72, 216, 360 Σ(36× 3) 108

Σ(72× 3) 216

Σ(216× 3) 648

Σ(360× 3) 1080

Σ(m), m = 60, 168 Σ(60) ' A5 60

Σ(168) 168

∆(3n2), n ∈ N\{0, 1} ∆(3n2); ∆(12) ' A4 3n2

∆(6n2), n ∈ N\{0, 1} ∆(6n2); ∆(24) ' S4 6n2

(C)-groups C(n, a, b) no general formula

(D)-groups D(n, a, b; d , r , s) no general formula
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Finite subgroups of U(3)

Finite subgroups of U(3) are not yet classified.

How can we get an idea of the finite subgroups of U(3)?

Two helpful tools:

the SmallGroups Library,

the computer algebra system GAP (Groups, algorithms and
programming)2

SmallGroups library contains information on all finite groups up to
order 2000 (except 1024).

GAP: read information from the library and calculate character tables,
irreps,...

2www.gap-system.org
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Finite subgroups of U(3)

We are interested in finite groups which

have a faithful

3-dimensional

irreducible representation and

cannot be written as a direct product with a cyclic group.

Examples: A4, S4, ∆(54), ... but not S3, A4 × Zn, ...

Why not direct products?

Let G be a finite group with an m-dimensional faithful irrep. Let c be the
order of the center of G .

Then Zn ×G has a faithful m-dimensional irrep if and only if n and c have
no common divisor.

In that case construction of the irreps of Zn × G from those of G is easy.
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Extraction of groups from the SmallGroups library

How are finite groups listed in the SmallGroups library? → [g , j ]

g : order of the group, j : counter. Example: A4
∼= [12, 3]

There are five groups of
order 12,

SmallGroup number
[12, 3] is non-Abelian,

character table shows a
3-dimensional faithful
irrep.
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Extraction of groups from the SmallGroups library

GAP-command StructureDescription → direct products

⇒ We have tools to search the SmallGroups library for finite subgroups of
U(3).

How many non-Abelian
groups are there?

→ finite subgroups of U(3) of order smaller than 512.
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The finite subgroups of U(3) of order smaller than 512

List (including generators) of the finite subgroups of U(3) (possessing a
faithful 3-dim. irrep) of order smaller than 512 [PL, 2010]

Noteworthy results:

SU(3)-subgroups: Classification scheme of Miller, Blichfeldt and
Dickson confirmed (up to order 511)

Smallest group of type (D): [162, 14] ∼= D(9, 1, 1; 2, 1, 1) cannot be
interpreted as irrep of some ∆(6n2).

U(3)-subgroups: some series of finite subgroups of U(3) found.
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Construction of some series of finite subgroups of U(3)

Helpful theorem

Let G = H o Zn be a finite group with the following properties:

1 G has a faithful m-dimensional irrep D.

2 n is prime.

3 The center of G is of order c 6= n with c prime or c = 1.

4 G cannot be written as a direct product with a cyclic group.

Generators of D(H): A1, ...,Aa; generator of D(Zn) : B. Then

G ′ := 〈〈A1, ...,Aa, e
2πi/bB〉〉

(which has a faithful m-dim. irrep too) cannot be written as a direct
product with a cyclic group if and only if

b = c jnk , j , k ∈ N.
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Example: The group S4(m)

S4 = A4 o Z2

Generators: A4: (14)(23), (123); Z2: (23)

S4 = A4 o Z2 has a faithful 3-dimensional irrep 3. ⇒ n = 2.

n = 2 is prime.

The center of S4 is trivial. ⇒ c = 1 6= 2 = n.

S4 cannot be written as a direct product with a cyclic group.

3 : (14)(23) 7→

1 0 0
0 −1 0
0 0 −1

 =: A, (123) 7→

 0 0 −1
−1 0 0
0 1 0

 =: B, (23) 7→

1 0 0
0 0 1
0 1 0

 =: C .

S4(m) := 〈〈A, B, e2πi/2m
C 〉〉 ∼= A4 o Z2m , m ∈ N\{0}.

→ Series of U(3)-subgroups.
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Series of finite subgroups of U(3)

group series derived from

Tn(m) = Zn o Z3m Tn = Zn o Z3

∆(3n2, m) ∼= (Zn × Zn)o Z3m , n 6∈ 3N ∆(3n2) ∼= (Zn × Zn)o Z3, n 6∈ 3N

S4(m) ∼= A4 o Z2m S4
∼= A4 o Z2

∆(6n2, m) ∼= ∆(3n2)o Z2m , n 6∈ 3N ∆(6n2) ∼= ∆(3n2)o Z2, n 6∈ 3N

∆′(6n2, j , k), n ∈ 3N ∆(6n2), n ∈ 3N
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An inequality for characters
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Construction of character tables

Especially in constructing character tables computer algebra systems are
extremely helpful, however ...

... we must not rely on computer algebra systems only

Construction of some character tables by hand → “helpful tricks”

Here one such trick will be presented.
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Characters of finite groups

Basic idea: a ∈ G ... finite group:

an = e, n := ord(a) < ∞

⇒ in a representation
D(a)n = 1.

⇒ eigenvalues of D(a) must be n-th roots of 1.

⇒ character (trace) of D(a) is a sum of n-th roots of 1.

→ What does this trivial insight tell us?
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An inequality for characters

An inequality for characters

Let a ∈ G ... finite group, and let D be a representation of G . If

n := ord(D(a)) = 1, 2, 3, 4, 6

then
χD(a) = 0 or |χD(a)| ≥ 1.

Proof : n = 1, 2: trivial (χD(a)= sum of ±1).

n = 3, 4, 6: regular tilings of the plane.

→ inequality for characters: trivial but useful
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Sums of up to five third roots of 1
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Sums of up to five fourth roots of 1
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Sums of up to five sixth roots of 1
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Sums of up to five fifth roots of 1
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Summary

Principal series

are helpful guides to understand the structure of a group

can be helpful in constructing irreps.

The finite subgroups of U(3) are not classified yet, but

the finite subgroups of SU(3) are.

The SmallGroups library gives information on the finite groups of
order ≤ 2000.

The computer algebra system GAP is a powerful tool to work with
finite groups.

The finite groups with faithful 3-dimensional irreps of order < 512
have been listed.

Several series of finite subgroups of U(3) have been derived from this
list.

Another helpful tool mentioned is

the inequality for characters derived from the regular tilings of the
plane.
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