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Vibration

• Object wants to be in a state of minimal potential energy.

• The force acting on it is equal to the negative gradient of its potential 
energy:

𝐹 = −
𝑑𝑉

𝑑𝑥
• Object at rest in position of minimal potential energy at 𝑥0 → 

𝐹 = −
𝑑𝑉

𝑑𝑥
ቚ
𝑥0
= 0



Vibration

• Object moved away from its equilibrium position by a small amount
𝛿𝑥

• 𝐹 𝑥0 + 𝛿𝑥 = −
𝑑𝑉

𝑑𝑥
ȁ𝑥0 −

𝑑2𝑉

𝑑𝑥2
ȁ𝑥0𝛿𝑥 + 𝑂 𝛿𝑥2 ≈ −𝑘 𝛿𝑥

𝛿𝑥

0 ≡ 𝑘
𝑚
𝑑2𝛿𝑥

𝑑𝑡2 𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘 𝑥 Harmonic 

oscillator



Vibration

• Solutions: Periodic functions in time

• 𝑥 𝑡 = 𝑥0 cos 𝜔𝑡 +
ሶ𝑥0

𝜔
sin(𝜔𝑡) with 𝜔 = 𝑘/𝑚

𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘 𝑥 Harmonic 

oscillator



Vibrating string

• Oscillating object: 1-dimensional (one degree of freedom)

• Vibrating string: Infinite number of degrees of freedom 𝑦(𝑥)

𝑦 = 0
𝑥 (position along string)

𝑦 (deviation from equilibrium position)



Vibrating string

• String is under a tension (force) 𝑇
constant along the whole string

• Mass per length of the string 𝜇

𝑦 = 0
𝑥 (position along string)

𝑦 (deviation from equilibrium position)

Mass element of mass 𝜇Δ𝑥

Force is tangential to string: 𝐹 𝑥 = 𝑇
𝑑𝑦

𝑑𝑥

Net force in y-direction: difference of the forces at the ends

𝐹 = 𝑇

𝐹 = 𝑇

Δ𝑥

Δ𝑦

𝑇
𝑑𝑦

𝑑𝑥
ቚ
𝑥+Δ𝑥

−
𝑑𝑦

𝑑𝑥
ቚ
𝑥

= 𝑇
𝑑2𝑦

𝑑𝑥2
ቚ
𝑥
Δ𝑥 + 𝑂(Δ𝑥2)



Vibrating string

• String is under a tension (force) 𝑇
constant along the whole string

• Mass per length of the string 𝜇

• Net force in y-direction:

𝑦 = 0
𝑥 (position along string)

𝑦 (deviation from equilibrium position)

𝐹𝑦(𝑥) = 𝑇
𝑑2𝑦

𝑑𝑥2
ቚ
𝑥
Δ𝑥

𝑚
𝑑2𝑦

𝑑𝑡2
= 𝜇Δ𝑥

𝑑2𝑦

𝑑𝑡2

𝜕2𝑦

𝜕𝑡2
−
𝜇

𝑇

𝜕2𝑦

𝜕𝑥2
= 0

Wave equation



Vibrating string

• Described by the wave equation: Hyperbolic PDE

• String vibrations can mathematically be described as superpositions
of waves moving along the string!

• Now we turn to musical instruments: String fixed at both ends.



Strings fixed at both ends

• Solve PDE by separation of variables

• Ansatz: 𝑦 𝑥, 𝑡 = 𝑓 𝑥 𝑔(𝑡)

•
𝑇

𝜇

1

𝑔(𝑡)

𝑑2𝑔

𝑑𝑡2
=

1

𝑓(𝑥)

𝑑2𝑓

𝑑𝑥2

𝜕2𝑦

𝜕𝑡2
−
𝜇

𝑇

𝜕2𝑦

𝜕𝑥2
= 0

•
𝑑2𝑓

𝑑𝑥2
= 𝐴𝑓 with 𝑓 0 = 𝑓 𝐿 = 0   Sturm-Liouville boundary value problem

•
𝑑2𝑔

𝑑𝑡2
=

𝜇

𝑇
𝐴𝑔

(Eigenvalue problem → Discrete values for A)



Strings fixed at both ends

•
𝑑2𝑓

𝑑𝑥2
= 𝐴𝑓 with 𝑓 0 = 𝑓 𝐿 = 0   Sturm-Liouville boundary value problem

•
𝑑2𝑔

𝑑𝑡2
=

𝜇

𝑇
𝐴𝑔

(Eigenvalue problem → Discrete values for A)

Compare to harmonic oscillator:  𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘 𝑥

𝒇(𝒙) is periodic in 𝒙.

𝒈(𝒕) is periodic in 𝒕.



Standing waves

• Strings fixed at both ends: 𝑦 𝑥, 𝑡 = 𝑓 𝑥 𝑔(𝑡)

• Periodic in space and time

From: Adjwilley, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

Amplitude at 𝑥

Oscillation in time 
(the same at all 𝑥)



Standing waves

• Solutions for 𝑓 for different eigenvalues 𝐴 are the modes of vibration

• Zeroth mode has largest wavelength 𝜆 = 2𝐿

• 1st mode has 𝜆 = 𝐿 = 2𝐿/2

• 2nd mode has 𝜆 =
2𝐿

3

• nth mode has 𝜆 = 2𝐿/(𝑛 + 1)

•
𝑑2𝑓

𝑑𝑥2
= 𝐴𝑓 with 𝑓 0 = 𝑓 𝐿 = 0   Sturm-Liouville boundary value problem



Frequencies of these harmonics
• All waves on the string have the same velocity of propagation 𝑐

• Velocity 𝑐 =
𝑇

𝜇
= 𝜆𝜈

• Frequency 𝜈 =
1+𝑛

2𝐿

𝑇

𝜇

𝜕2𝑦

𝜕𝑡2
−
𝜇

𝑇

𝜕2𝑦

𝜕𝑥2
= 0

1

𝑐2

𝜇 mass per length of string
𝑇 string tension
𝜆 wavelength (=2𝐿/(𝑛 + 1))
𝜈 frequency

Higher frequencies for
• Higher string tension
• Lower string length
• Higher mass of the string
• Higher mode (overtones)



Typical values (guitar)

• String length 650 mm

• Example: E-String (lowest string of the guitar)
• 𝜈 ≈ 81 Hz

• 𝐿 = 650 𝑚𝑚 ⇒ 𝜆 = 1.3 𝑚

• 𝑐 = 𝜆𝜈 ≈ 105 𝑚/𝑠

• 𝜇 ≈ 5 g/m = 0.005 kg/m

• 𝑇 = 𝜇𝑐2 ≈ 55 𝑁



Experiments

Higher frequencies for

• Higher string tension
• Lower string length
• Higher mass/length of the string
• Higher mode (overtones)



What makes the sound of an instrument?

• Plucking a string in practice always produces also higher modes

• Distribution of these modes makes the character of the sound

• Player can control this!



Examples for overtone spectra
• Wine glass (quite strong zeroth mode)

596 Hz



Examples for overtone spectra

• A string of guitar
(base frequency 110 Hz)

• Plucked at center of string



Examples for overtone spectra

• A string of guitar
(base frequency 110 Hz)

• Plucked at center of string



Examples for overtone spectra

• A string of guitar
(base frequency 110 Hz)

• Plucked close to
edge of string



Examples for overtone spectra

• A string of guitar
(base frequency 110 Hz)

• Harmonic (Flageolet)

220 Hz



What makes the sound of an instrument?

• Way how the string is hit determines the oscillation with which the
body of the instrument is “fed”

• Sound we hear is (almost) not the sound of the strings, but the sound 
of the vibrating body of the instrument, set into vibration by the 
strings

• Vibration of the body: Same mathematical structure as the vibrating 
string, but in 2d → Standing waves in two dimensions
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